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ABSTRACT

In this paper, we review the design of Minimum Barrier Dis-
tance and propose a new path-wise distance metric called
Minimum Spanning Distance (MSD). Unlike most existing
distance metrics, which only define distance between two
pixels on gray-scale images, the proposed distance metric
conceptually estimates the color space spanned by the colors
on the path of interest. Therefore, the MSD takes into consid-
eration the three channels on color images at the same time
to compute distance. Compared with other distance metrics,
MSD can not only achieve the highest numerical scores but
also produce visually good segmentation maps in our experi-
ment of interactive segmentation on the Gulshan dataset.

Index Terms— Distance Transform, Interactive Segmen-
tation

1. INTRODUCTION

Distance transform aims to find the minimum distance for
each pixel to a set of target pixels (or called seeds). Based
on different applications and input modality, many distance
metrics have been studied over the years. In general, distance
metrics can be roughly classified into two categories. One
is the point-wise method, which measures distances between
two pixels directly. The commonly used Euclidean distance
belongs to this category. The other class is the path-wise
method, which measures distance depending on the spatial
path between two pixels. The geodesic distance [1] and bar-
rier distance [2] lie in this category.

Both distance metrics have their merits in different ap-
plications. In this paper, we consider image segmentation
as an application. Fig. 1 illustrates the case of interactive
object segmentation. The user provides some scribbles in
foreground object and background regions. We can perform
object segmentation by computing distance transform to the
drawn foreground pixels and background pixels respectively.
We then classify all pixels as foreground or background ac-
cording to their distance to the two sets of targets. To this
end, the path-wise distance usually has favorable performance
against point-wise distance since point-wise distance mea-
surement usually ignores connectivity between pixels. Pre-
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Fig. 1: We show the results of interactive image segmentation
with different distance transforms. (a) Input image and user
specified scribbles (b) Groundtruth (c) Euclidean distance (d)
Geodesic distance (¢) MBD (f) The proposed MSD

viously, Criminisi et al. [3] have exploited geodesic distance
transform in a segmentation system. Another application that
path-wise distance is favored against point-wise distance is
salient object detection. Wei et al. [4] proposed a useful as-
sumption that boundary pixels are mostly background. They
perform geodesic distance transform to measure the connec-
tivity of a pixel to its nearest boundary and use the distance as
the saliency value.

Recently, a new path-wise distance metric, Minimum Bar-
rier Distance (MBD) [2, 5], was shown to have low sensitivity
to noise, blur and the position of seeds. Recent works [6, 7] in
salient object detection followed the boundary prior assump-
tion [4] and used MBD as the distance metric to achieve state-
of-the-art performance. They also noticed the superiority of
barrier distance over geodesic distance.
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Fig. 2: Illustrations of path-wise distance metrics

Despite the success of MBD in saliency detection, how-
ever, we notice the limitation of MBD as it is defined only
in grayscale images. Previous works applied MBD to color
images by computing MBD for each color channel separately
and average them to get the final distance map. We argue that
this simple integration could work in saliency detection with
boundary prior since image boundary (background region) is
usually simple and homogeneous, but it is not the case for
segmentation. When we consider the case of scribble-based
segmentation as described earlier, the color distribution of a
scribble might be diverse (i.e. target seeds have many color
appearance) and it can cause the distance transform noisy, re-
sulting many false segmentation as shown in Fig. 1(e).

In this paper, we review the design of MBD and general-
ize the philosophy to color space as a new path-wise distance
metric. The proposed distance metric conceptually estimates
the color space spanned by the colors on the path of interest
and finds the minimum among all candidate paths, so we term
this metric as the Minimum Spanning Distance (MSD). We
perform evaluation on the Gulshan dataset [8] and the results
show that MSD achieves better performance in both cross-
entropy and weighted Fg [9] than MBD.

2. BACKGROUND

We briefly review the path-wise distance metrics before we in-
troduce the proposed MSD. For simplicity, consider an image
as a 4-connected planar graph. A path between two pixels of
interest, p and g, is a consecutive pairs of pixels and can be ex-
pressed as m = {7 (0), ..., m(n)}, where p = 7(0), ¢ = 7(n),
and consecutive pixels are adjacent neighbors. Given a path-
wise distance metric f(7), the distance transform for pixel p
with respect to a seed set .S can be written as

D(p) = min f(m), (D
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where II,, 5 is the set of all paths between p and seeds in S.
The geodesic distance [1] takes the accumulated changes
of all traversed pixels as distance. It can be written as

faeo(m) = z_: [I(7(i+ 1)) — I(w(2))]. 2)
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Fig. 3: We show a color space example that VMBD fail to
properly measure distance. (a) and (b) illustrate two differ-
ent color distributions (ignore B axis for better visualization)
while they have the same VMBD value.

The barrier distance [2], on the other hand, takes the dif-
ference of maximum and minimum values (i.e. the intensity
barrier) on the path as distance. It can be expressed as

n
fupp(m) = maxI(n(i)) — minI(x (7). 3)

Both fge, and fy;pp were designed to measure the vari-
ation along a path. Fig. 2(a) shows a 1D illustration of these
two distance metrics. The length of the curve captures the
geodesic distance and the margin spanned by the two red lines
is the barrier distance of pixel p and ¢. This example also sim-
ulates small intensity fluctuation of weak texture or noise in
images. We can also see why barrier distance is more robust
here. The geodesic distance tends to accumulate all small
changes along the path. The barrier distance is robust to such
textural or noisy signal better as the barrier size keeps almost
the same within texture or noisy regions.

MBD in Eq. 3 only defines in grayscale images. How-
ever, most of the time we deal with color images. The idea
of barrier distance for higher dimensional data is not clear.
Previous works [6, 7] exploit MBD by computing distance
transform for each channel separately and average them as fi-
nal distance. Such simple integration treats each channel as
independent signal and the paths traversed in different chan-
nels may be different, which sometimes causes difficulty to
separate an object from cluttered background. Previously, the
Vectorial Minimum Barrier Distance (VMBD) [10] was pre-
sented to extend MBD to higher dimensional data. For color
images, the VMBD computes the following

fvmpp () = Br(7) By () By (), @)

where B.(r),c € r,g,b computes the barrier distance along
the ¢ — th channel. In the geometric view, VMBD computes
the volume of the minimal axis-aligned bounding box enclos-
ing all colors on the path as illustrated in Fig. 2(b). We argue
that VMBD is not a good generalization for MBD in color
space. Again, consider paths between pixel p and ¢. Fig. 3
depicts two possible color distributions resulting in the same
VMBD value. Yet, it is clear that the color distribution on



path 1 is more diverse, so we expect the measured distance on
path 1 should be larger than that on path 2. However, VMBD
can not discriminate the two cases properly.

3. MINIMUM SPANNING DISTANCE

Based on the discussion in previous section, we think MBD
in color space is not as simple as finding the barrier along
each axis and compute the product. The spirit of MBD as
well as other path-wise distance metrics is essentially to mea-
sure the appearance variation along a path. By definition in
Eq. 3, MBD is computed as difference of the maximum value
and the minimum value on a path. In another view, it finds
the length on the intensity axis occupied by the pixel values
visited along a path. With the concept in mind, we proposed
to generalize the idea of MBD to color space by using the
space spanned by the colors visited along a path as a distance
metric. In this way, we can successfully distinguish the dif-
ference of the two paths in Fig. 3. For a pixel of interest p,
we compute the spanning distance for all paths connecting p
and seeds in S and find the minimum distance among them.
Therefore, we term the proposed distance as the Minimum
Spanning Distance (MSD).

In practice, we compute MSD by counting the number of
colors visited along a path. Human eyes can not discrimi-
nate minor difference among similar colors, which allows us
to quantize the color space into discrete boxes and count the
number of boxes instead of colors. We consider 8-bit dynamic
range (0-255) for each color channel. In order to divide the
space into boxes with identical volume, we choose the box
size to be 2F. For example, if the box size is 16, then each
axis is divided into 16 sections and there will be 163 boxes in
total. For convenience, we introduce B,, as the box index of
the color possessed by pixel p. We also maintain an index list
L() for each pixel. L, () stores the indices of visited boxes
along path 7 connecting p to S. The proposed MSD can be
simply written as

fusp(m) = len(L()), (5)

where len(.) returns the number of indices in a list.

Despite the quantization helps reduce the number of col-
ors to track, computing exact MSD for all pixels is still chal-
lenging. Inspired by the fast geodesic distance transform [1]
and approximate MBD [6], we also use raster scan to compute
MSD. The raster scan technique traverse an image in forward
and backward passes iteratively. Consider an image as a 4-
connected graph, in the forward pass, we update each pixel
from its upper and left neighbors. In the backward pass, we
update each pixel from its lower and right neighbors.

Let p be the current pixel in the updating step and ¢ be
an adjacent pixel of p. We assume that ¢ has been visited in
current iteration. We check the index list L, holding by ¢ to
see if updating from ¢ will result in smaller distance for p. We
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Fig. 4: Convergence analysis for raster-scan based distance
transform.

first compute a temporary index list,
L =L, U By, (6)
Then, we compare L; with L,, and update the distance as
D(p) = min{len(L),len(Ly)}. (7

If D(p) is updated by L, we will also update L,, = L;.

4. EXPERIMENTS

We perform evaluations in interactive segmentation using the
Gulshan dataset [8]. In this dataset, 151 natural images are
provided with groundtruth object mask along with computer-
generated scribbles indicating foreground and background re-
gions. For all distance metrics, we perform segmentation sim-
ply by running distance transform with respect to foreground
or background seeds. Denote the distance maps as D and
Dp. We obtain the final segmentation map by

- {0
L

The target of interactive objection segmentation is to clas-
sify pixels into two classes, foreground or background, so we
use cross-entropy as one of our performance metrics. Lower
cross-entropy value indicates better segmentation results.
Furthermore, we also perform evaluation using weighted
F3 [9]. This metric can better evaluate the segmentation
map since it takes into consideration the location of errors in
the predicted maps. The higher weighted F3 means better
segmentation performance.

We denote our method using box size 16, 32, 64 as
MSD16, MSD32, and MSD64 respectively. Note that MSD128
is meaningless as box size 128 is too large and box size
smaller than 8 will cause large memory consumption. We
run above MSD variants for iterations to convergence. As
we show on the right of Table. 1, MSD64 has poor perfor-
mance due to over quantization. MSD16 and MSD32 are

if Dp(i) < Dp(i)
othwise
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Fig. 5: Visual comparison of our MSD with other distance metrics in image segmentation results.

Table 1: Numerical evaluation on Gulshan dataset.

Distance metrics | EUCI  EUC3  Geo  MBD | MSD16 MSD32 MSD64
Cross-Entropy | 29.27  28.64 3134 3393 | 2731 2621 3281
Weighted Fjs 0.6631 0.6706 0.6469 0.6166 | 0.6821  0.6807  0.5812

considered as suitable settings. We compare with other path-
wise distance metrics geodesic distance (Geo) and MBD as
well as point-wise Euclidean distance. All path-wise distance
metrics are implemented using 4-connected graph. For color
images, Geo and MBD are performed channel by channel and
then we average the maps as final distance. For Euclidean
distance, we can also compute distance channel by channel
and average afterwards. We denote it as EUC1. We can also
compute pixel-wise distance for all channels at the same time.
We denote this variant as EUC3.

We have conducted iteration analysis to determine the
number of passes needed for the raster-scan based distance
transform. We present the results in Fig. 4 and it suggests that
6 iterations are sufficient for all methods to converge. The
experimental results based on 6 scan passes (3 forward and 3
backward) are shown in Table. 1. Our MSD16 and MSD32
consistently achieve the top two in both cross-entropy and
weighted Fg. We also show some visual comparison in
Fig. 5. The first row shows an image with simple foreground
object and complex background region, our MSD32 method
can produce the best segmentation result. The the second
row shows an woman whose hair color is similar to the back-
ground wood color. It shows the weakness of both the our
method and MBD. When the color of foreground object and
background region are too similar, both method can not pro-
duce favorable segmentation result. However, MSD will not

over extend the region of foreground object to background
region. The images in the third and forth rows show that
even with only one foreground scribble and one background
scribble MSD can still produce good quality segmentation
result. Furthermore, the forth row shows that MBD some-
times produces segmentation with some white dots noise in
the background region. In conclusion, the proposed MSD has
better performance both numerically and subjectively.

5. CONCLUSION

In this paper, we proposed the Minimum Spanning Dis-
tance (MSD), whcih estimates the color space spanned by the
colors on the path of interest. By simply quantizing the color
space into discrete boxes and counting the number of boxes
on a path, our method takes into consideration the three chan-
nels on color images at the same time to compute distance.
Therefore, it does not simplify the three channels informa-
tion into one dimension as other distance metrics defined on
grayscale image do. Evaluating MSD in the task of inter-
active segmentation, it can achieve the highest numerically
score and provides better visual results.
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